Mostrando las entradas para la consulta "física cuántica" ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta "física cuántica" ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

De la Física Cuántica a la Cuántica Social o QuantHumanity

Hemos hablado muchas veces de "Física Cuántica" en este blog. No es fácil explicar qué es, e incluso un socorrido chiste dice que si crees comprender la física cuántica... ¡entonces no la has entendido en absoluto! Porque  como apuntó Niels Bohr, "Quien no esté impactado con la Física Cuántica es porque no la ha entendido".  

Ayer nos reunimos en BAT Tower, representantes de distintas asociaciones ciudadanas altruistas (como Internet&Euskadi, Aprendices, GetxoBlog,...) que hemos estado más de dos décadas colaborando en la socialización de Internet, la Tecnología, la Ciencias,.. al conjunto de la sociedad. Y comenzamos a buscar caminos para proseguir en esta labor de aportación desde la Sociedad Civil. Debatiendo un rato, una posibilidad que encontramos fue transponer ideas de la Mecánica Cuántica.

El primer reto es buscar un nuevo nombre o eje conductor como lo fue el cisne negro de Internet o lo es la Inteligencia Artificial. Pensamos en ello dado que desde el 7 de junio de 2024, las Naciones Unidas proclamaron el 2025 como el Año Internacional de la Ciencia y la Tecnología Cuántica. Esta iniciativa mundial de un año de duración "se observará a través de iniciativas en todos los niveles destinadas a aumentar la conciencia pública sobre la importancia de la cuántica y sus aplicaciones". 

Explicado para un profano, la Física o Mecánica Cuántica es una rama de la física que se ocupa de estudiar cómo funcionan las cosas a escalas muy pequeñas, como átomos y partículas subatómicas. Es diferente de la física clásica, que explica cómo funcionan las cosas grandes que vemos a diario, como coches, planetas o pelotas. A continuación, lo explicamos con conceptos sencillos, seguidos de su posible traslación a las ciencias humanas:

1. Todo lo real está formado por partículas pequeñas

En el nivel más básico, todo lo que existe (tú, el aire, los planetas) está compuesto por partículas diminutas como electrones, protones, neutrones y partículas subatómicas. La física cuántica estudia cómo se comportan estas partículas.

Las grandes corrientes mundiales, de economía, guerra y futuro, parecen en manos de muy pocas personas, élites o corporaciones, que quizá no sean ni siquiera conocidos. Pero cada persona y cada comunidad, en su realidad cotidiana, puede tomas decisiones que son determinantes, incluso a escala planetaria.

2. El comportamiento de las partículas es extraño

A diferencia de los objetos grandes, las partículas subatómicas no siguen las reglas "normales del mundo macroscópico". Por ejemplo:

  • Están en varios lugares a la vez por el principio de superposición: Una partícula puede "existir" en más de un sitio al mismo tiempo, como si una pelota estuviera en dos habitaciones a la vez. 
  • Se comportan como partículas y ondas: Dependiendo de cómo las observes, pueden actuar como pequeñas bolitas o como ondas. Es como si un coche pudiera atravesar una pared porque se convierte en una ola.
Hemos de c
onfiar en nosotros mismos, en el inmenso poder de la sociedad
Mucha gente pequeña, en lugares pequeños, haciendo cosas pequeñas, puede cambiar el mundo”. La frase se atribuye a Eduardo Galeano, aunque algunos eruditos la trasladan hasta el siglo XVIII para poner términos parecidos en boca de San Juan Bautista de La Salle. Somos como "el gato de Schrödinger", que quizá hoy nos preguntaría: ¿Estáis vivos, sabéis hacia dónde vais o quién conduce este planeta?

3. El observador importa y todo está conectado

En el mundo cuántico, observar algo cambia cómo se comporta. Esto se llama el principio de incertidumbre. Por ejemplo, si intentas medir la posición exacta de una partícula, pierdes precisión sobre su velocidad, y viceversa.

A través del fenómeno llamado entrelazamiento cuántico, dos partículas-ondas pueden estar conectadas de tal forma que lo que le pase a una afecta instantáneamente a la otra, sin importar lo lejos que estén. Es como si giraras un dado en tu casa y automáticamente cambiara otro dado en otro país.

Algo parecido sucede y puede potenciarse en nuestras relaciones interpersonales y con la naturaleza, y hoy aún más y mejor con las posibilidades digitales. Las acciones, grandes o pequeñas, de aprendizaje, de colaboración, de solidaridad,... se expanden y propagan como ondas que generan avances en los entornos próximos y remotos, inspirando a otros seres humanos, iluminando un futuro de esperanza y apuntando hacia una utopía hacia la que avanzar.

¿Por qué es importante la Física Cuántica?

Aunque suena extraño, la física cuántica no es solo teoría: ha llevado a inventos como los ordenadores, los láseres, los GPS e incluso tecnologías futuras como los ordenadores cuánticos. Es la base de cómo entendemos el universo en su nivel más fundamental. 

Necesitamos una llamada a movilizarnos con una Cuántica Social o QuantHumanity para vislumbrar el futuro que merecemos y queremos construir junto con todas las generaciones presentes, mediante la acción urgente e inmediata desde una cultura de humanismo, de paz, de ética transhumanista con respeto a la naturaleza. 

Partiremos de una visión a medio y largo plazo, con mirada autocrítica que reúna activismo ético ante una tecnosociedad que debe asegurar la pervivencia de los valores democráticos que defiendan el bien común de toda la sociedad. Apelamos a la educación, a la ciencia, al conocimiento como caminos por los que transitar buscando alianzas con la política de altura, la universidad comprometida, el periodismo riguroso, las organizaciones empresariales y sindicales, los movimientos sociales,... 

2025: Año Internacional de la Ciencia y la Tecnología Cuánticas

¡Bienvenidos al 2025, Año Internacional de la Ciencia y la Tecnología Cuánticas! Bajo un titular provisional, QuantHumanity, un grupo de personas estamos valorando aprovechar este conocimiento en el ámbito de la política y la sociedad.

Ha pasado un siglo desde la fundación de la mecánica cuántica. La física cuántica puede entenderse como una metáfora en las ciencias sociales al describir cómo los sistemas sociales no tienen una única realidad fija, sino que dependen del observador y de las interacciones. Aquí exponemos ocho metáforas que vinculan conceptos de la física cuántica con las ciencias sociales, destacando la complejidad, la subjetividad y las dinámicas interactivas de los sistemas sociales:

1. La Superposición Social: Así como una partícula puede estar en varios estados a la vez hasta ser observada, los fenómenos sociales pueden tener múltiples significados o interpretaciones dependiendo del contexto cultural, ideológico o del observador. Así como en física cuántica una partícula puede existir en múltiples estados simultáneamente hasta que es observada (superposición), los fenómenos sociales también pueden manifestarse de diversas maneras dependiendo del contexto, la percepción o la interacción de los individuos involucrados. 

Dos ejemplos: 1º Una protesta social puede interpretarse como un acto de justicia o de desorden dependiendo del marco cultural o ideológico del observador. 2º Un líder político puede ser visto como un visionario o un opresor, dependiendo de quién lo juzgue. En ambos casos, el "estado" del sistema social se "colapsa" en una realidad concreta sólo cuando es percibido, medido o interpretado, al igual que en la física cuántica. Esta metáfora resalta la complejidad, la subjetividad y la interdependencia de los fenómenos sociales, donde las múltiples posibilidades coexisten hasta que son definidas por las interacciones humanas.

2. El Entrelazamiento Humano: En la física cuántica, dos partículas pueden permanecer conectadas independientemente de la distancia. En las ciencias sociales, esto simboliza cómo las relaciones humanas y las dinámicas sociales están profundamente entrelazadas: las acciones de un individuo o grupo pueden influir en otros de forma inmediata, incluso a gran distancia (globalización, redes sociales).

3. El Principio de Incertidumbre Social: Inspirado en Heisenberg, este principio podría sugerir que cuanto más intentamos medir o categorizar un fenómeno social (como una cultura o una ideología), más cambiamos su naturaleza. Ejemplo: investigar un grupo social puede modificar sus comportamientos originales debido a la observación externa.

4. El Colapso de Realidades SocialesEn mecánica cuántica, la realidad de una partícula "colapsa" en un estado definido al ser medida. En ciencias sociales, las narrativas y percepciones colectivas "colapsan" en una realidad aceptada cuando un grupo decide qué interpretación seguir. Ejemplo: la formación de una opinión pública.

5. La Dualidad SocialAsí como una partícula puede comportarse como onda o partícula según cómo se mida, las personas y los grupos pueden mostrar características diferentes (colaboración vs. conflicto, unidad vs. división) dependiendo de las circunstancias sociales.

6. Energía del Campo Social: El campo cuántico, que conecta y afecta a todas las partículas, puede interpretarse como una metáfora de los sistemas sociales: las creencias, normas y valores compartidos actúan como un "campo social" que conecta e influye en todos los individuos de una comunidad.

7. Fluctuaciones Cuánticas de la Opinión PúblicaLas partículas cuánticas fluctúan de forma aleatoria e impredecible. En las ciencias sociales, esto podría simbolizar el comportamiento aparentemente caótico e impredecible de las opiniones públicas o tendencias sociales, que se ven afectadas por pequeñas influencias externas.

8. La Resonancia ColectivaEn la física cuántica, la resonancia ocurre cuando las frecuencias se alinean y amplifican. En ciencias sociales, esto puede compararse con cómo movimientos o ideas ganan fuerza cuando las creencias y energías de individuos se sincronizan en un propósito común.

Estas metáforas (véanse en más posts) no sólo ilustran la complejidad y subjetividad de los fenómenos sociales, sino que también sugieren cómo el estudio interdisciplinario puede enriquecer nuestra comprensión de la realidad humana.

La cuántica del cambio social solidario y justo

Correlacionar la física cuántica (posts) con conceptos humanos como la solidaridad y la justicia social puede parecer abstracto, pero hay puntos de encuentro interesantes cuando se exploran los principios fundamentales de la mecánica cuántica y las implicaciones filosóficas que estos inspiran. Que ello nos sirva de guía para proponer acciones colectivas, es lo que tratamos de enlazar con QuantHumanity, en sucesivos posts.

1. Interconexión Cuántica y Solidaridad
  • Principio cuántico: En la física cuántica, el fenómeno de la entrelazamiento cuántico implica que dos partículas pueden estar correlacionadas de tal manera que, incluso separadas por grandes distancias, los cambios en una afectan a la otra instantáneamente. Esto refleja una profunda conexión entre elementos del universo.
  • Analogía social: Este principio inspira la idea de que todos los seres humanos estamos interconectados. Así como las partículas cuánticas influyen mutuamente, las acciones de una persona pueden repercutir en los demás. La solidaridad, entonces, puede entenderse como un reflejo de esta interconexión: actuar en beneficio del otro tiene un impacto en el sistema global del cual todos formamos parte. 
  • Justicia social: Esto nos recuerda que las desigualdades y los privilegios están interrelacionados, y abordar las injusticias requiere un enfoque sistémico. Las decisiones políticas, económicas o sociales en un lugar afectan a otros, incluso en regiones distantes. Como en el entrelazamiento, las políticas democráticas deben considerar las conexiones entre comunidades para crear soluciones integrales.

2. Probabilidad Cuántica y Justicia

  • Principio cuántico: En el mundo cuántico, los eventos no son deterministas, sino probabilísticos. Por ejemplo, el estado de una partícula no está definido hasta que se observa (superposición cuántica). Esto nos obliga a replantearnos nuestras nociones de certeza y predestinación.
  • Analogía social: En justicia social, esto nos recuerda que no todas las personas tienen las mismas probabilidades de éxito debido a desigualdades sistémicas. Un sistema democrático debe corregir estas probabilidades injustas proporcionando igualdad de oportunidades y acceso. Las democracias deben diseñar políticas que nivelen las "probabilidades" iniciales para garantizar la justicia social. La justicia puede beneficiarse de esta idea al reconocer que no existen verdades absolutas sobre las intenciones y circunstancias humanas. Los sistemas judiciales más justos son aquellos que incorporan flexibilidad, contextualización y la posibilidad de múltiples perspectivas, en lugar de operar con rigidez.

3. Principio de Incertidumbre y Empatía

  • Principio cuántico: El principio de incertidumbre de Heisenberg establece que no podemos conocer simultáneamente con precisión ciertas propiedades de una partícula (como posición y velocidad). Este límite fundamental muestra que hay aspectos de la realidad que siempre permanecerán inciertos.
  • Analogía social: De forma similar, nunca podemos comprender completamente las vivencias y circunstancias de otra persona. Reconocer nuestras limitaciones al juzgar o interpretar a otros fomenta la empatía y una justicia más humana.
  • Analogía democrática: La incertidumbre cuántica nos enseña que las democracias no son sistemas perfectos y que las decisiones políticas deben adaptarse a la complejidad y la incertidumbre del mundo real. La transparencia y el acceso a información ayudan a manejar esta incertidumbre social. Reconocer la incertidumbre en la toma de decisiones fomenta sistemas democráticos más humildes y flexibles.

4. Colaboración Cuántica y Construcción de Comunidades

  • Principio cuántico: En los sistemas cuánticos, las partículas actúan como parte de un sistema mayor, y su comportamiento solo puede entenderse en relación con el todo.
  • Analogía social: Esto refleja cómo las comunidades humanas prosperan a través de la colaboración y la solidaridad. Los actos de justicia no solo benefician a los individuos, sino que fortalecen el sistema social en su conjunto.

5. Potencial Cuántico y Cambio Social

  • Principio cuántico: La superposición cuántica sugiere que las partículas pueden estar en múltiples estados a la vez hasta que se produce una medición. Esto abre posibilidades infinitas antes de que se colapse en un estado único.
  • Analogía social: Este concepto puede inspirar el pensamiento de que las realidades sociales no están fijas. Tenemos múltiples posibilidades para construir un mundo más justo y fraternal, dependiendo de nuestras elecciones y acciones colectivas.
  • Analogía democrática: Esto refleja cómo, en una democracia, múltiples ideas, voces y perspectivas coexisten y tienen el potencial de influir en el sistema. La diversidad de puntos de vista es esencial para un sistema democrático justo, así como las posibilidades múltiples lo son para el universo cuántico. Una democracia funcional permite explorar varias "superposiciones" políticas y sociales antes de colapsar en decisiones o políticas concretas.
6. Colapso Cuántico y Decisiones Democráticas
  • Principio cuántico: En el mundo cuántico, una partícula "colapsa" en un estado definido cuando es observada o medida. Antes de esto, existen múltiples posibilidades. 
  • Analogía democrática: En una democracia, las deliberaciones públicas y el debate representan las "posibilidades" de la superposición, y el colapso ocurre cuando se toma una decisión colectiva, como en las votaciones. Este colapso no elimina otras perspectivas, sino que las deja latentes para futuros debates. Las democracias saludables respetan el proceso previo al "colapso", fomentando el diálogo inclusivo antes de decidir.

7. Física Cuántica y Distribución del Poder

  • Principio cuántico: En sistemas cuánticos, no hay jerarquías estrictas; las partículas son interdependientes y las interacciones determinan el estado general.
  • Analogía social: Esto puede inspirar estructuras democráticas más horizontales, donde el poder no se concentra en unos pocos, sino que fluye dinámicamente entre los ciudadanos. Esto es esencial para la justicia social, ya que las jerarquías rígidas suelen perpetuar desigualdades. La interdependencia cuántica refuerza la idea de que la democracia debe ser inclusiva y distribuida, favoreciendo la equidad.

8. Coherencia Cuántica y Unidad Democrática

  • Principio cuántico: En un sistema cuántico, la coherencia se refiere a la capacidad de las partículas para mantenerse sincronizadas y actuar como una unidad, incluso si son independientes.
  • Analogía democrática: Las democracias exitosas encuentran equilibrio entre la individualidad de las personas y su capacidad de trabajar en conjunto hacia objetivos comunes. La coherencia social es clave para lograr justicia social en un marco democrático. La justicia social, como la coherencia cuántica, requiere mantener un balance entre diversidad y unidad.

En resumen, la física cuántica, aunque es un campo de estudio científico, nos invita a reflexionar sobre cómo las conexiones invisibles, la incertidumbre y las posibilidades infinitas pueden inspirar modelos más solidarios y justos en nuestras sociedades.

Metáfora de Richard Feynman sobre la física y el ajedrez


Richard Feynman (muchos posts), ganador del Premio Nobel de Física en 1965, utilizó una metáfora de ajedrez para explicar la ciencia, en particular, la física. Según Feynman, descubrir las leyes de la física es como intentar descifrar las leyes del ajedrez solo observando las partidas. Por ejemplo, después de ver varias partidas de ajedrez, podrías darte cuenta de que los alfiles solo pueden moverse por las casillas del mismo color. Entonces, anotas esto como una de las “leyes” del ajedrez.

Jorge Wagensberg Lubinski, a quien tuve el gusto de conocer y con quien compartí varias comidas cuando andábamos ambos en temas de museos de ciencia (véase su biografía y nuestro obituario, que fuera alumno del gran Pere Rivera i Ferránde igual grato recuerdo), lo contaba así

"En su libro The Character of the Physical Law, el genial Richard Feynman ofrece una de sus bellas metáforas: la naturaleza se puede comparar a una colosal partida de ajedrez. Mirando la partida (observando la realidad) se pueden descubrir las reglas de juego (las leyes fundamentales de la naturaleza). El científico es el mirón de café. Hasta aquí, Feynman. Veamos ahora si la idea da para algo más,"...

De manera similar, los científicos observan el universo y tratan de descubrir las leyes que lo rigen. Al igual que el observador del ajedrez, los científicos no conocen todas las reglas desde el principio y deben descubrirlas a través de la observación y el experimento. Esta metáfora ilustra cómo los científicos descubren las leyes de la naturaleza y cómo estas leyes pueden cambiar a medida que se recopilan más observaciones y datos. Es una forma sencilla y efectiva de describir el proceso científico.

Richard Phillips Feynman (11 de mayo de 1918 - 15 de febrero de 1988) fue un destacado físico teórico estadounidense. Nacido en Queens, Nueva York, Feynman es conocido por sus trabajos en la formulación por integrales de camino en la mecánica cuántica, la teoría de la electrodinámica cuántica y la física de la superfluidez del helio líquido subenfriado. También propuso el modelo Partón en la física de partículas. Por sus contribuciones al desarrollo de la electrodinámica cuántica, Feynman recibió el Premio Nobel de Física en 1965, junto con Julian Schwinger y Sin-Itiro Tomonaga. Desarrolló un conjunto de esquemas de representación pictórica ampliamente utilizados para las expresiones matemáticas que rigen el comportamiento de las partículas subatómicas, que más tarde se conocieron como los diagramas de Feynman.

Durante su vida, Feynman se convirtió en uno de los científicos más conocidos en el mundo. En una encuesta de 1999 de la revista británica Physics World, de los 130 principales físicos de todo el mundo citados, Feynman fue clasificado como uno de los diez más grandes físicos de todos los tiempos. Feynman también ayudó en el desarrollo de la bomba atómica durante la Segunda Guerra Mundial y se hizo conocido para un amplio público en la década de 1980 como miembro de la Comisión Rogers, el grupo que investigó el desastre del transbordador espacial Challenger.

Recordada esta analogía gracias a este recomendable TikTok de Raúl Salazar.
@ral.salazar6 Descubriendo la Teoría Cuántica_ Los Secretos del Mundo Mágico de la Física #teoria #cuantica #fisicaquantica ♬ sonido original - Raúl Salazar

La ecuación de Dirac: Puente entre cuántica y relatividad

La fórmula de Dirac, o más específicamente la ecuación de Dirac, es una de las ecuaciones fundamentales de la física cuántica. Fue propuesta por el físico teórico británico Paul Dirac en 1928 y combina la mecánica cuántica y la teoría de la relatividad especial de Einstein para describir el comportamiento de partículas subatómicas como los electrones.

La ecuación de Dirac es: 

Donde: i: Unidad imaginaria. : Constante de Planck reducida (=h/2π). ψ: Función de onda del electrón, también conocida como espinor. c: Velocidad de la luz. m: Masa de la partícula. αβ: Matrices 4× conocidas como matrices de Dirac, que satisfacen relaciones algebraicas específicas. : Operador gradiente. t: Tiempo.

Esta ecuación describe cómo evoluciona en el tiempo la función de onda de una partícula relativista con espín 1/21/2, como el electrón. Su trascendencia deriva de los siguientes aspectos.

- Unificación de teorías: Combina la mecánica cuántica y la relatividad especial, resolviendo problemas asociados a la incompatibilidad entre ambas teorías para partículas de alta energía.

Predicción del espín: Introduce de manera natural el concepto de espín cuántico (s=1/ 2 ) como una propiedad intrínseca de las partículas. 

- Predicción de la antimateria: La ecuación permite soluciones con energía positiva y negativa. Las soluciones de energía negativa llevaron al descubrimiento teórico de la antimateria, específicamente el positrón (la antipartícula del electrón), que fue confirmado experimentalmente en 1932 por Carl Anderson. 

- Estructura interna del electrón: Explica propiedades del electrón, como su momento magnético y su comportamiento en campos electromagnéticos.

- Base de la electrodinámica cuántica (QED): La ecuación de Dirac es un componente fundamental de la teoría que describe la interacción entre partículas cargadas y el campo electromagnético.

Algunas de sus propiedades matemáticas más destacadas:

- Matrices de Dirac: Estas matrices son clave para que la ecuación sea consistente con la relatividad. 
Espinor: La solución ψ es un espinor de cuatro componentes, que contiene información sobre la probabilidad de encontrar la partícula en diferentes estados de espín y energía.
Simetrías: La ecuación de Dirac respeta las simetrías fundamentales de la relatividad especial (invariancia de Lorentz).

La ecuación de Dirac sigue siendo fundamental en:

  • Física de partículas: Descripción de quarks, leptones y sus antipartículas.
  • Teoría de campos cuánticos: Desarrollo de teorías avanzadas como la electrodinámica cuántica y el modelo estándar.
  • Física de materiales: Análisis de materiales como el grafeno y sistemas donde los electrones se comportan como partículas relativistas.

2005: Año Mundial de la Física

Así como el 2000 fue el Año Mundial de las matemáticas, celebraremos la Física en el centésimo aniversario del año milagroso de Einstein. 

En apenas siete meses de 1905, un asistente técnico de la Oficina Suiza de Patentes en Berna llamado Albert Einstein, enviaba para su publicación seis artículos a la prestigiosa revista alemana Annalen der Physik. Estos trabajos, en palabras del historiador y físico John Stachel, cambiaron la faz de la Física, de la Historia y del mundo que hoy conocemos. 

Por ello, el año 2005 será el Año Mundial de la Física, iniciándose el 13 de enero con una ceremonia en la sede de la UNESCO, en París, conmemorando las geniales publicaciones de Albert Einstein entre marzo y septiembre de 1905 que modificaron “copernicanamente” la visión de la Física en el mundo: la teoría de la relatividad, la teoría cuántica (efecto fotoeléctrico) y el movimiento browniano. Será una cita mundial no sólo para todos los físicos y científicos, sino para quienes enseñan o aprenden física y para toda la opinión pública como reconocimiento a una disciplina científica que ha configurado determinantemente nuestra realidad contemporánea en sus dimensiones tecnológicas, económicas, culturales, sociales y políticas. 

En el centenario de ese Annus Mirabilis de Einstein, del que con razón se ha apuntado que "nunca, ni antes ni después, ha enriquecido tanto y en tan corto tiempo a la Ciencia una sola persona como hizo Einstein en su año maravilloso". Aquel joven Einstein, a sus 26 años, demolía con claridad y lógica impecables los cimientos de la Física conocida, para erigir un nuevo esquema con un espacio-tiempo en el que pierden su carácter de absolutos tanto el espacio como el tiempo, obligando al abandono de conceptos clásicos como la simultaneidad absoluta y el éter lumínico. Desde su Principio de Relatividad, aunque Einstein prefería la “Teoría de los Invariantes” (donde no todo es relativo, sino que son constantes el valor de la velocidad de la luz y el intervalo espacio-tiempo”), llegó en el quinto de sus seis artículos a la famosa relación masa-energía, E = m.c2. 

En aquella época su autor ignoraba el descomunal poder escondido en las entrañas de su sencilla fórmula, con innumerables aplicaciones que abarcan un espectro desde las armas atómicas y nucleares (con las terribles consecuencias que llevarían a Julius Robert Oppenheimer a exclamar que “los físicos han conocido el pecado, y éste es un conocimiento que no les abandonará”), hasta su beneficiosa utilización social o médica. Años más tarde, Einstein enunciaría el Principio de Equivalencia sobre el que construirá su Relatividad General, obra cumbre, por su originalidad y belleza, del pensamiento científico, que principió en 1907 y concluyó esencialmente en 1915. 

Películas como “Una mente maravillosa” sobre John Forbes Nash Jr. ofrecen una visión distorsionada sobre el trabajo y las cualidades de los investigadores, profesionales y enseñantes matemáticos y científicos. Para mejorar el bagaje científico-matemático acorde con las necesidades de la vida contemporánea de toda la ciudadanía, y especialmente de las generaciones más jóvenes con independencia de la opción académica escogida, debería revalorizarse la Ciencia como área curricular, adoptándose un estilo docente más experimental con espacios internos (laboratorios,…) y equipamientos externos de especialización en la divulgación científica, como los museos de ciencia, junto a exposiciones y talleres dedicados en centros educativos y universitarios, jornadas de puertas abiertas en los centros especializados, conferencias y ferias escolares de ciencia. Todo ello puede aportar un factor de incentivo científico y una perspectiva más accesible para el conjunto del alumnado, y de sus familias, para atender una necesidad palpable de nuestra civilización en la era del siglo XXI. 

Resultará muy eficaz el método histórico de divulgación de la vida de los científicos y científicas más portentosos, como Isaac Newton (probablemente el hombre más decisivo en la Historia de la Humanidad) o Marie Curie, único ser humano doblemente Nobel en Física y Química. 

También existe una rigurosa y divertida escala que ordena los experimentos más bellos de la Física, según una encuesta de 2002 entre los lectores de la revista Physics World. Se destacan, en orden cronológico, la medición de la circunferencia terrestre (Eratóstenes – siglo III a.c.), el experimento en la torre de Pisa o la caída en el plano inclinado (Galileo - Siglo XVII), la descomposición de la luz solar mediante un prisma (Newton -1665), la medida de la gravedad en la balanza de torsión (Cavendish – 1798) o el péndulo de Foucault (Foucault – 1851). Ya tendremos oportunidad de leer sobre todo ello en los próximos meses de 2005. 

El propósito básico de esta conmemoración del Año Mundial de la Física es mejorar la percepción pública que se tiene sobre la importancia de la Física para la vida cotidiana. En especial, la comunidad física mundial está preocupada por una marcada caída reciente en el interés de la juventud por estudiar Física. Si en 2000, Año Mundial de las Matemáticas, un periódico británico anunció en un titular “Las Matemáticas son sexy”, ahora en 2005 habremos de popularizar una perspectiva amena y humanista de la Física para ampliar su conocimiento medio de todo el alumnado, con independencia de su opción profesional o universitaria, e interesar a un mayor porcentaje del estudiantado universitario hacia el estudio superior de Física por su polivalencia y necesidad social. 

Ojalá aprovechemos esta oportunidad única de 2005 para popularizar el inmenso legado histórico de la Física. Un inmejorable camino será a través de biografías como la del Nobel de 1921, Albert Eisntein, y otros prodigiosos físicos. Además la Olimpiada internacional de Física (similar a las Olimpíadas de Matemáticas) se celebrará en julio su 36ª edición en la Universidad de Salamanca.
Actualización en octubre de 2020.

Participa en The BIG Bell Test

Participa en The BIG Bell Test
Nos escribe Marta García-Matos, PhD, Outreach desde el equipo de educación y divulgación científica del ICFO-Instituto de Ciencias Fotónicas, un centro de investigación de Barcelona sobre la ciencia y la tecnología de la luz. Todo por mediación de nuestro común amigo Jordi Vivancos

Nos anima a la difusión en centros escolares de Euskadi de un experimento científico muy especial en el que queremos involucrar al mayor número posible de escuelas. A través de los siguientes apartados nos explican en qué consiste el experimento y por qué queremos involucrar a un número tan grande de escuelas:
  • El experimento se llama The BIG Bell Test, el objetivo de los experimentos es demostrar la validez de los fundamentos de la física cuántica. Para que sea un éxito, se necesita la participación de al menos 30.000 personas.
  • Se trata de un gran experimento de física cuántica a nivel mundial, diseñado de manera que la conclusión sólo es válida si los científicos usan en sus medidas una fuente de números aleatorios generados por seres humanos - y no mediante un proceso natural o un algoritmo.
  • Los participantes harán su contribución a través de un videojuego en el que tendrán que comportarse de la manera más aleatoria posible. 
  • El The BIG Bell Test tendrá lugar el próximo 30 de noviembre de 2016 y es en realidad una serie de experimentos en varios laboratorios del mundo: Barcelona, Brisbane (Australia), Concepción de Chile, Niza,Shanghái, Viena y Zurich, por ahora.
  • En ICFO-Instituto de Ciencias Fotónicas estamos creando material para que el experimento pueda ser puesto en contexto dentro del aula desde varios frentes: física, matemáticas, historia de la ciencia (experimentos famosos) e incluso filosofía de la ciencia.
Participa en The BIG Bell Test Web: thebigbelltest.org / Intro interactiva: thebigbelltest.org/comic/?l=ES 
Hashtag: #TheBIGBelltest

Angela Merker: Primera biografía de quienes estudiaron Física pero destacaron en otros campos (I)

Vídeo de recomendable visionado, con la increíble historia de cómo llegó a ser la mujer más poderosa del mundo una joven divorciada, okupa y camarera de discoteca,.... Porque había estudiado Física.
Iniciamos una serie de posts sobre personalidades que estudiaron Física, pero destacaron luego en otros ámbitos. La primera celebridad es Angela Merkel, canciller de Alemania desde 2005 y líder de su partido, la CDU, desde 2000. Frau Europa, una de las figuras que más han marcado la política europea en los últimos años. Ante la grave crisis económica que sufrió la UE a partir de 2008, impuso sus criterios de austeridad al resto de miembros. Nacida en Hamburgo el 17 de julio de 1954 como Angela Dorothea Kasner, estos son algunos de datos de esta poderosa mujer que tal vez desconocías: 

Angela Merkel era la primogénita de una profesora de inglés y latín y del pastor luterano Horst Kasner, que en 1954 decidió ir contra la corriente de alemanes del Este que huían hacia el mundo libre y trasladar a su familia a la RDA para predicar en aquel estado comunista y oficialmente ateo. Kasner trataría de desarrollar una idea de Iglesia en el socialismo. Criada en la Alemania del Este La familia se estableció en un seminario en la pequeña ciudad de Templin, unos cien kilómetros al norte de Berlín. El complejo no solo servía para la formación de pastores luteranos, sino que era también residencia para cientos de discapacitados, con los que la joven Angela convivía a diario. 

Gracias a su padre, la familia no sufrió como otros los rigores de la Alemania comunista y tenían acceso a medios de comunicación occidentales y a un cierto bienestar. Excelente estudiante, ingresó en las juventudes comunistas y aprendió ruso. En todo caso, Merkel ha señalado en alguna ocasión: «Desde muy joven tuve claro que la Alemania del Este no podría funcionar». 

Doctora en Física Angela Merkel estudió Física en la Universidad de Leipzig y se doctoró con una tesis sobre química cuántica. Hasta la caída del Muro trabajó como investigadora en el Instituto Central de Química Física de la Academia de Ciencias, en Berlín Este. 
Casada con un físico y luego con un químico El apellido con el que todo el mundo la conoce en la actualidad procede de su primer matrimonio con el físico Ulrich Merkel (1953), un compañero de estudios con el que se casó en 1977. En 1981 se fue repentinamente del pequeño piso conyugal, llevándose consigo la lavadora, según se cuenta. Posteriormente se unió a un eminente químico nominado al Premio Nobel, Joachim Sauer, con quien está casada desde 1998 y al que se conoce como «el fantasma de la opéra», porque solo se le ve en público con Angela Merkel una vez al año, en el Festival de Bayreuth

En la sauna cuando cayó el Muro Angela Merkel entró en política tras el desmoronamiento de la Europa comunista, incorporándose al partido Despertar Democrático. Fue viceportavoz del último primer ministro de la RDA y el único elegido democráticamente en aquella república, Lothar de Maizière. Sin embargo, se perdió los primeros momentos de la caída del Muro de Berlín. Según Angela Merkel misma contó, aquel jueves 9 de noviembre de 1989 fue, como hacía todos los jueves, a la sauna con una amiga. «La atmósfera había estado tensa durante días, yo pensaba que algo iba a pasar, y había oído el anuncio en la televisión de que las fronteras se abrirían - contó hace años al diario británico «The Guardian»-. Pero era jueves y el jueves era mi día de sauna, así que allí es donde estaba».
Algunas de las citas de Angela Merkel más definitorias:
  • La cuestión no es si podemos cambiar, sino si estamos innovando lo suficientemente rápido.
  • La libertad no consiste en estar libres de algo, sino en estar libres para hacer algo.
  • Cuando se trata de la dignidad humana, no podemos ceder concesiones.
  • Quien se dedica a la política siempre tiene dudas y, por tanto, revisa permanentemente sus respuestas.
  • El mejor compromiso es uno donde todo el mundo hace una contribución.
  • Queremos que la inversión en investigación sea desgravable.
  • Si  quieres una sociedad en la que merezca la pena vivir tienes que conocer a las personas y apoyarlas. Me tranquiliza que, de los 82 millones de personas que viven en nuestro país, 30 millones hayan elegido ser voluntarios.
Angela Merker: Primera biografía de quienes estudiaron Física pero destacaron en otros campos (I)
En muy distintos años, el último 2019, Angela Merkel ha sido considerada por la revista Forbes como la mujer más poderosa del mundo por decimotercera ocasión según el listado anual de la publicación. Definitivamente: Quien estudia Física está preparado para destacar en cualquier disciplina,... Uno de sus grandes discursos, al inicio de la pandemia en marzo de 2020,...
Otro aporte posterior sobre la frugalidad de Angela Merkel en este enlace de Quora.

Teoría de Cuerdas con 11 dimensiones: El secreto del universo

La teoría de cuerdas es una propuesta en física teórica que busca unificar todas las fuerzas fundamentales de la naturaleza y explicar el comportamiento de las partículas subatómicas. Según esta teoría, las partículas fundamentales (como electrones, quarks, etc.) no son puntos sin dimensión, sino que son pequeñas cuerdas vibrantes. La forma en que estas cuerdas vibran determina las propiedades de las partículas, como su masa y su carga.

La teoría de cuerdas fue desarrollándose gracias a las contribuciones de varios físicos a lo largo de los años, comenzando en la década de 1960. Aunque no tiene un único autor, se puede identificar a algunas figuras clave y momentos importantes en su origen.


Autores y momentos destacados:


1. Gabriele Veneziano (1968): Fue el primero en establecer una conexión matemática que sentó las bases de la teoría de cuerdas. Desarrolló el modelo de Veneziano para explicar ciertos comportamientos de las partículas subatómicas. Este modelo, inspirado en la función beta de Euler, describía las interacciones fuertes de los hadrones (partículas formadas por quarks) y dio origen a la idea de las cuerdas como entidades físicas.
2. Leonard Susskind, Holger Bech Nielsen y Yoichiro Nambu (principios de los 70): Independientemente, interpretaron el modelo de Veneziano como la representación de cuerdas unidimensionales vibrando. Nambu y Susskind, en particular, jugaron un papel clave en desarrollar la idea de que las partículas subatómicas podían ser descritas como las vibraciones de estas cuerdas.

3. John Schwarz y Joël Scherk (1974):  Descubrieron que la teoría de cuerdas también podía incluir la gravedad. Este fue un momento crucial, ya que sugirieron que las cuerdas podían ser la clave para unificar todas las fuerzas fundamentales, incluyendo la gravedad cuántica.

4. Michael Green y John Schwarz (años 80): Trabajaron en resolver inconsistencias matemáticas en la teoría y demostraron que podía ser consistente con la supersimetría. Esto dio lugar a la teoría de supercuerdas, que incluye partículas supersimétricas hipotéticas.

5. Edward Witten (1995): Propuso la teoría M, que unificaba las cinco versiones de la teoría de cuerdas existentes en ese momento, y sugirió que la teoría requería 11 dimensiones en lugar de 10.


Origen: contexto histórico:


 Década de 1960: La teoría surgió inicialmente como una descripción de la fuerza nuclear fuerte para explicar las propiedades de los hadrones, pero quedó desplazada por la cromodinámica cuántica.

 Década de 1980: Fue retomada como una candidata para la teoría del todo, unificando la mecánica cuántica y la relatividad general.

Conceptos clave de la teoría de cuerdas:


1. Cuerdas en vez de puntos: Las partículas son cuerdas extremadamente pequeñas, del tamaño de la longitud de Planck (10^-37 metros).

2. Vibraciones: Diferentes modos de vibración de las cuerdas corresponden a diferentes partículas. Por ejemplo, un tipo de vibración podría representar un electrón, mientras que otro podría representar un fotón.

3. Dimensiones adicionales: Para que la teoría funcione matemáticamente, requiere la existencia de más dimensiones espaciales además de las tres que percibimos. Generalmente se habla de un total de 10 o 11 dimensiones, dependiendo de la versión de la teoría.

4. Unificación: La teoría de cuerdas aspira a unificar la teoría de la relatividad general (que describe la gravedad a gran escala) con la mecánica cuántica (que describe las partículas a escalas microscópicas).


Una versión más avanzada, llamada teoría M o teoría del todo, sugiere que las cuerdas son en realidad membranas multidimensionales (o “branas”). La teoría M propone un universo de 11 dimensionesLas mismas 10 de las supercuerdas. más una dimensión adicional que podría describir membranas u objetos más grandes que las cuerdas.


Desafíos: Falta de pruebas experimentales: Debido a que las cuerdas son increíblemente pequeñas, no hay tecnología actual que pueda confirmar directamente su existencia. Complejidad matemática: La teoría es extremadamente compleja y aún no se comprende completamente.


Si se demuestra, la teoría de cuerdas podría ser la tan buscada “teoría del todo”, capaz de explicar todos los fenómenos físicos del universo bajo un único marco matemático.